

Dott. Ing. Borgioli Niccolò

Simulator of a drone
ball follower

Project for the exam of Real Time System of prof. Buttazzo

Simulator of a drone ball follower

• • •

Goal of the project � 1

Sommario

Goal of the project .. 3

Specifications ... 3

Physical models ... 3

Drone model ... 3

Ball model ... 6

Image recognition ... 6

Ball position ... 7

Controller .. 8

Design choices ... 10

World .. 10

Ball .. 10

User interfaces ... 10

User panel ... 11

3D simulator interface .. 11

Tasks and data structures .. 12

UDP image packets receiving ... 12

Drone physic evolution simulation .. 12

Drone control computation .. 13

Ball physic evolution simulation .. 13

Ball recognition in the image .. 13

UDP position packets sending ... 13

Ball speed random update ... 13

User interaction .. 13

Data structures ... 13

Timing and schedule .. 14

Testing environment .. 15

Results and future work .. 15

Ball recognition algorithm .. 15

Simulator of a drone ball follower

• • •

Goal of the project � 2

Drone controller ... 16

UDP transmission .. 16

Bibliografia ... 16

Simulator of a drone ball follower

• • •

Goal of the project � 3

Goal of the project
The project aims to realize a real time simulator of a drone that have to follow a ball. The ball

movement is generated randomly by a dedicated task. The simulator has to recognize and follow the

ball using a virtual camera mounted on the drone.

Specifications
The visualization of the environment should be done in Unreal Engine, while all of the computation

regarding image recognition, trajectory planning, drone control and system simulation have to be

done by a separated program running on Linux using Allegro 3 Library.

Physical models
Drone model
The drone we are going to simulate is a quadcopter: a multirotor helicopter that is lifted and propelled by

four rotors, it can be easily describe as a rigid body with four forces applied at his corners. The drone can

move along three axes (x, y and z) that allows the vehicle to move up/down, forward/backward and left/right,

moreover can change his orientation by rotating along three perpendicular axes attached to his body and these

rotations are called: roll (rotation around x axis), pitch (rotation around y axis) and yaw (rotation around z

axis). Thus the rigid body has 6 degrees of freedom (DOF) in the three dimensional space.

Figure 1 - Roll, pitch and yaw movement. (Wikipedia)

The drone dynamics is controlled by increasing or decreasing the rotational speed of the rotors:

• each couple of rotors on the same arm rotates in the same direction in order to control the yaw of
the vehicle; by reducing or increasing the speed of a couple is possible to adjust yaw.

• by increasing thrust on a rotor and reducing on the opposite one is possible to adjust roll or pitch.
• increasing or decreasing the speed of all rotors the drone hoovers on his position or adjusts his

altitude.

Figure 2 - rotors rotation (Wikipedia)

Simulator of a drone ball follower

• • •

Physical models � 4

In order to mathematically describe the model of the drone is useful to define two different reference

frames: the drone fixed frame (that is attached to the drone rigid body) and the inertia fixed frame.

In the space, the position of the drone is described respect to the inertia fixed frame on the x, y and z

axes and his orientation (attitude) is described still respect to the inertia fixed frame with three

different angles: roll (φ), pitch (θ) and yaw (ψ).

Moreover, the speed of the body is described into the body fixed frame: linear velocity are indicated

with u, v and w, while the angular ones by p, q and r.

!" =
$
%
&
			Ω) =

*
+
,
		-. =

/
0
1
		2. =

3
4
!

To move from a frame to the other are needed two rotation matrixes: R (for the position) and W (for

the angles).

5 =
cos * ∗ sin , cos + ∗ sin(,) −sin	(+)

cos , ∗ sin * ∗ sin + − cos * ∗ sin	(,) cos * ∗ cos , + sin * ∗ sin + ∗ sin	(,) sin * ∗ cos	(+)
cos * ∗ sin + ∗ cos , + sin * ∗ sin	(,) sin + ∗ cos * ∗ sin , − sin * ∗ cos	(,) cos + ∗ cos	(*)

@ =
1 0 −sin	(+)
0 cos	(*) cos + ∗ sin	(*)
0 −sin	(*) cos + ∗ cos	(*)

Where:

Ω) = @ ∗ 2.											!" = 5 ∗ -.

Each rotor rotates at a velocity 1C and generates a force DC = E ∗ 1CF perpendicular to itself and a

reactive torque due to the rotation GC = H ∗ DC around the axis of the rotor.

In the drone fixed frame is called thrust the total force perpendicular to the x/y plane. This force T is

directed on the z axis of the drone fixed frame:

I = DC
J

CKL
= E ∗ 1CF

J

CKL
= E ∗ 1CF

J

CKL

Moreover the torque in each direction of the drone frame can be described:

M =
MN
MO
MP

=
Q ∗ DJ − Q ∗ DF
Q ∗ DR − Q ∗ DL

H ∗ (1FF + 1JF − 1LF − 1RF)

Where l is the length of the arm of the drone (in the model all of the arms of the drone are

considered equals).

Putting thrust and torque together I can write in matrix form:

Simulator of a drone ball follower

• • •

Physical models � 5

I
MN
MO
MP

=
E E E E
0 −Q ∗ E 0 Q ∗ E

−Q ∗ E 0 Q ∗ E 0
−H H −H H

∗

1LF

1FF

1RF

1JF
= S ∗

1LF

1FF

1RF

1JF

Thus we have defined the force allocation matrix M that gives us a relation between the rotors

speeds and the forces we are dealing with.

Consider now the Newton-Euler equations:

In the inertial frame the acceleration is due to only to gravity and thrust, so for the first Newton-

Euler equation:

!" =
$
%
&
= −

0
0
T
+
1
U ∗ 5 ∗

0
0
I

Consider now the angular acceleration: the external torque τ is equal to the centripetal forces

2.× W ∗ 2. and the angular acceleration of the inertia W ∗ 2. in the drone fixed frame:

M = W ∗ 2. + 2.× W ∗ 2.

So from this we can obtain 2.:

2. =
3
4
!
=

MN ∗ WXYL

MO ∗ WZYL

MP ∗ W[YL
−

WZ − W[
WX

∗ 4 ∗ !	

W[− WX
WZ

∗ 3 ∗ !

WX − WZ
W[

∗ 3 ∗ 4

Where WX, WZ, W[are components of the inertia vectors and p and q are the previous angular velocities.

With the physical model just obtained we can so write the functions to update the drone state in the

simulation space. The drone state is described by the !", Ω", -., 2. vectors plus the !" and Ω" vectors

in order to avoid using derivatives into the code. Moreover, also the vector containing the rotational

velocities of the rotors 1C is held into the state of the drone.

Define k the step index so that the current step is k+1. The first value of the state to update is the

velocity in the drone body fixed frame:

2. H + 1 = 2. H + Δ^ ∗ 2.(H + 1)

Then compute the fixed frame angular velocity and update the angles in the fixed frame:

Ω(H + 1) = @ ∗ 2.(H + 1)

Ω H + 1 = Ω H + Δ^ ∗ Ω(H + 1)

Simulator of a drone ball follower

• • •

Image recognition � 6

Finally starting from the thrust T compute the new linear acceleration, speed and position:

!"(H + 1) =
$
%
&
= −

0
0
T
+
1
U ∗ 5 ∗

0
0
I

!" H + 1 = !" H + Δ^ ∗ !"(H + 1)

!" H + 1 = !" H + Δ^ ∗ !"(H + 1)

At this point the drone state is fully update.

Ball model
The ball model is much more simple respect to the one of the drone: is represented by a rigid body

perfectly symmetric along all of the three axis with 3 DOF. Since for the purposes of this project

there is no need to deeply investigate the ball dynamic its state is made by the position and speed in

the inertia fixed frame. In the simulation the ball speed is update randomly by a dedicated task so

the only thing to do at every simulation step is to update the ball position accordingly:

E_QQ`ab H + 1 = E_QQ`ab H + Δ^ ∗ E_QQb`ccd H + 1

Image recognition
Starting from the image provided by Unreal Engine there is to recognize the shape of the ball and

compute it’s features (diameter and position in the image) that will be used to compute the exact

position of the ball in the environment respect to the drone.

To speed up the identification of the ball the algorithm exploits the last position of the ball in the

image and makes a research in a reduced size window centered in that position, if the ball is not

found the window takes the whole image size.

Figure 3 - Windowed ball search

Simulator of a drone ball follower

• • •

Ball position � 7

To find the ball the algorithm looks for black pixels (RGB value equal to (0, 0, 0)), in particular

makes the assumption that in our environment only the ball is black and that there are no reflexes on

the ball (so it’s color is uniformly black). This allows to simplify the algorithm making it to look to

four fundamental pixels: top, bottom, most left and right. To verify that the four points represents

the ball the program checks the two diameters (North-South and East-West) to verify that the

difference between them is under the maximum allowed error (this is needed because when UE

renders the image the ball could be not a perfect circle so a tolerance is required in order to avoid

false negative); is important to set carefully this value in order to avoid false negatives and false

positives, to do that I have done some experiments and the optimal value for MAX_ERR is of 10

pixels difference between the horizontal and vertical diameters.

Ball position
To compute the position of the ball respect to the drone I have exploited some simple geometry:

efg^hc" ∶ ef_Uhc" = efg^ ∶ ef_U			 → 					efg^ =
efg^hc"
ef_Uhc"

∗ ef_U

Call 5 = 	 dCbklmndCoplmn
 the ratio between the distance from drone and the diameter in the reference image.

To compute R, I made an experiment placing the ball at 300 cm of distance from the drone, from the

previous step I know the diameter (39) and R is 7.692 (so I can choose to approximate that value

with 7.7).

Then I have to consider the horizontal and vertical displacement respect to the drone, to do that

every time the algorithm computes the ratio between pixels and centimeters using the informations

about the ball diameter:

3$
qU =

ef_U`X
ef_Urp

				→ 					qU =
ef_Urp
ef_U`X

∗ 3$

This equation gives the number of centimeters that are represented by a given number of pixels in

the plane passing through the ball center, this value changes with the distance of the ball from the

drone.

Now so since we know the position of the center of the ball in the image we can compute the

distance (in pixels) of the ball from the center of the image and convert that value in cm using the

last equation.

This stage so we have computed the distance of the ball from the drone in all of the three axis

components, all this information can now be used to control properly the drone.

Simulator of a drone ball follower

• • •

Controller � 8

Controller
Starting from the actual position of the ball respect to the drone, the first step is to compute the new

desired position for the drone, fixed the parameter BALL_DST the desired distance of the drone

from the ball the program computes the exact position where to place the drone.

First I needed to obtain the distance position of the ball respect to the body fixed frame: since the

camera is attached to the drone, but the axes of the image recognition are flipped, is just needed to

do a little adjustment:

efg^Xsltum = efg^Xvwxmlw
efg^Zsltum = efg^[vwxmlw
efg^[sltum = efg^Zvwxmlw

Now I have to move from body fixed frame to fixed frame; calling B the position of the ball, O the

origin of the fixed frame, D the origin of the body frame and R the rotation matrix of the drone fixed

frame respect to the fixed frame, the following relations allows to get the position of the ball in the

fixed frame:

yz = y{ + 5 ∗ {z

Where OD is known since is the position of the drone respect to the fixed frame and DB is the

previously computed position of the ball respect to the drone fixed frame.

Figure 4 - Drone fixed frame respect to fixed frame

Notice: OB, OD and DB are vectors while R is a 3x3 matrix; to avoid matrix computation in the c

code I computed offline the equation separating into the three components, the result is:

E_QQX = e!|}~X + cos !|QQ ∗ cos %_1 ∗ efg^Xsltum − cos !|QQ ∗ sin %_1 − cos %_1 ∗ sin !|QQ ∗ sin 3f^qℎ ∗ efg^Zsltum +
(sin !|QQ ∗ sin %_1 + cos !|QQ ∗ cos %_1 ∗ sin 3f^qℎ) ∗ efg^_(&_e!|}~)	

E_QQZ = e!|}~Z + cos 3f^qℎ ∗ sin %_1 ∗ efg^Xsltum + cos !|QQ ∗ cos %_1 + sin !|QQ ∗ sin 3f^qℎ ∗ sin %_1 ∗ efg^Zsltum
− cos %_1 ∗ sin !|QQ − sin !|QQ ∗ sin %_1 ∗ sin 3f^qℎ ∗ efg^[sltum

E_QQ[= e!|}~[− sin 3f^qℎ ∗ efg^Xsltum + cos 3f^qℎ ∗ sin	(!|QQ) ∗ efg^Zsltum + cos !|QQ ∗ cos 3f^qℎ ∗ efg^[dhaÅc

Simulator of a drone ball follower

• • •

Controller � 9

Now the exact position of the ball in the reference frame is known and so is possible to compute the desired

position for the drone. The goal is to place the drone at the same height of the ball at a distance BALL_DST.

e$ = E_QQX − e!|}~X,					e% = E_QQZ − e!|}~Z

Ç = tanYL
e%
e$

Figure 5 - Drone desired position

The actual distance on the horizontal plane of the ball from the drone is efg^ah =
dX
ÖÜáà

, so using some

trigonometry is possible to compute the new position of the drone:

e~gX = e!|}~X + efg^ah − z2ââ_{äI ∗ cos Ç
e~gZ = e!|}~Z + (efg^ah − z2ââ_{äI) ∗ sin	(Ç)

e~g[= E_QQ[

Since the drone should be horizontal looking to the ball, the desired orientation of the drone is:

!|QQ = 0
3f^qℎ = 0
%_1 = Ç

That desired position and orientation is given as input to digital controller composed by two loops:

the external one computes the thrust and the torques to command in order to achieve the target

position, while the internal one computes the required forces of each to do that. Both loops are done

using PD controllers which gains have been found using MATLAB simulation and then adjusted

with some experiments. In order to realize a realistic simulation each rotor cannot exceed a

maximum speed and consequently a maximum force.

The output forces and torques of the controller are then converted into angular speeds for the four

rotors of the drone, using the inverse of the Force Allocation Matrix (M) seen in the drone model, in

order to give these as input to the vehicle.

Simulator of a drone ball follower

• • •

Design choices � 10

Figure 6 - controller scheme (MATLAB)

Design choices
World
To simplify the render operation the world where to simulate is flat and without obstacles (excluded

the ground), moreover in order to simplify the ball recognition algorithm the world is of a color very

different from the ball and the shades are very light.

Ball
The color of the ball is set to be fully black without reflexes or shades on it in order to simplify the

recognition algorithm. Another important aspect is the ball maximum speed which is limited from -

MAX_BALL_SPEED to MAX_BALL_SPEED; this is due to simplify the controller.

User interfaces
There are two interfaces for the user: the 3D world simulator and the control panel. The 3D

simulator is realized with using Unreal Engine 4.19, is an application that runs on MacOS, Linux or

Windows. The control panel is a simple interface that is realized using Allegro Library v.3 and runs

on Linux. When the simulator is working both user interfaces are available for the user, to do that

the best solution is to use two different OS (eventually emulated): one running Linux and one

running MacOS, Linux or Windows. There are no special hardware prerequisites in order to run the

control panel, while in order to run the 3D simulator there are some recommended hardware and

software requirements that are needed by the engine to work correctly; these requirements are listed

below:

Platform OS Version Processor Memory Video Card
MacOs High Sierra 10.3.5 Quad-core Intel

 2.5 GHz or faster
8 GB RAM Metal 1.2 Compatible

Graphics Card
Linux Ubuntu 18.04 Quad-core Intel or AMD

2.5 GHz or faster
32 GB RAM NVIDIA GeForce 960 GTX

or higher with latest
NVIDIA binary drivers

Windows Windows 10 – 64bit Quad-core Intel or AMD
2.5 GHz or faster

8 GB RAM DirectX 11 Compatible

Table 1 - Recommended requirements (UE 4 documentation)

Simulator of a drone ball follower

• • •

User interfaces � 11

User panel
This panel allows the user to control the status of the simulation, change ball speed, exit and start or

stop the movement of the ball and drone. The interface is intuitive: on the top left displays the

commands to control the program. On the top right is shown the status of the ball and of the drone

that can be “stopped” or “moving” depending on the user inputs. Between the two boxes can appear

eventual error messages about images receiving. On the bottom box are displayed some useful data

about the ongoing simulation such as drone and ball position, the estimated distance of the ball from

the drone (respect to drone fixed frame), the rotors speeds commanded by the controller and the

actual maximum ball speed selected by the user. An image of the control panel is shown below:

Figure 7 - Control panel

3D simulator interface
This interface can be used to follow the evolution of the simulation in the 3D world. The user here

sees the drone camera perspective and the only interaction is the quit of the perspective that can be

performed by pressing ESC.

Simulator of a drone ball follower

• • •

Tasks and data structures � 12

Figure 8 - 3D Simulator interface

Tasks and data structures
To simulate the whole environment are involved some concurrent activities to compute the physical

evolution of the system, his control and manage the network transmissions. All of this works are

done by eight different tasks running concurrently:

• UDP image packets receiving (RECV)
• Drone physic evolution simulation (DRONE)
• Drone control computation (CONTROLLER)
• Ball physic evolution simulation (BALL)
• Ball recognition in the image (RECOGNITION)
• UDP position packets sending (SEND)
• Ball speed random update (INPUT)
• User interaction (GUI)

UDP image packets receiving
This task is in charge of receive the image packets sent by the 3D world simulator. The task waits for

a header packet and then collects all of the following packets until completes to receive the image

bitmap, then saves that into a shared variable and signals that a new image is available, then restarts

the process.

Drone physic evolution simulation
This thread is responsible to compute the evolution of the position, velocity and acceleration of the

drone in the environment following the physical laws described into the drone model.

Simulator of a drone ball follower

• • •

Tasks and data structures � 13

Drone control computation
The drone control computation task will simulate the behavior of a microcontroller responsible to

give to the motor the correct instructions to make the drone move in the desired position. This task

takes as input the position of the ball respect to the drone and knows the position of the drone in the

fixed frame, starting from that data computes the position of the ball in the fixed frame, then the

target position where to place the drone and finally the required rotational speed to require to each

rotor to move in that position. Also stability of the drone is guaranteed by this task.

Ball physic evolution simulation
As for the drone the evolution in time of the position of the ball in the environment is done by this

thread following the physical laws described into the ball model.

Ball recognition in the image
This thread takes the image received by the RECV task and applies the recognition algorithm to find

if there is a ball in the image and if so his position respect to the drone. The output is placed into a

shared variable.

UDP position packets sending
To provide a fluid representation of the simulation in the 3D world simulator this task sends an

UDP packet containing the actual position of the ball and of the drone to the simulator. To have a

smooth visualization of the simulation the human eye needs at least 24 frames for second, so this

task sends 30 position update packets for seconds this way is possible to have a fluid visualization

even if some packet gets lost.

Ball speed random update
This task randomly updates the speed of the ball respect to each axis; as previously mentioned in the

ball model the speed of the ball along each axis is randomized between -MAX_BALL_SPEED and

MAX_BALL_SPEED.

User interaction
The user interaction task is in charge to update the control panel user interface with the latest

information about the program, moreover checks for user commands to modify simulation

parameters or terminate it by setting the end flag and signaling it to main with a dedicated

semaphore.

Data structures
To realize a correct simulation the threads composing the program needs to exchange information

among them; to do this are needed some data structures:

• drone_state – this struct contains all of the information about the state of the drone: position,
speed and acceleration in both of the frames plus the rotational speed of each rotor;

• ball_state – this struct contains the info about position and speed of the ball;
• image_info – contains the information about the image received (size, width and height) and the

vector containing the bitmap received.

Simulator of a drone ball follower

• • •

Timing and schedule � 14

Over to these structures, thread shares also other simple global variables all protected by mutexes.

Figure 9 - Task interaction graph

Timing and schedule
In this program eight different threads executes at the same time; in reality this is not really what

happens since it would require having 8 different dedicated CPUs, so is required to have a

scheduling algorithm that shares the available CPU/CPUs among all of the involved threads. In the

environment used to test the application the Linux part runs into a virtual machine with just one

processor that so have to be shared among the eight involved threads.

As previously mentioned to have a smooth visualization of a video is needed to have at least 24

updates for second, so to be resistant against the loose of some packets is needed to send 30 packets

for second. This means that the SEND task period should be L	b
Rã	`oråck = 0.033	g = 33	Ug

Since it would be useless to send a packet containing the position update would be useless without

any new data to display also the DRONE and BALL tasks should have the same period. These tasks

are also some of the most important and so the ones with the second highest priority.

Simulator of a drone ball follower

• • •

Testing environment � 15

For simplicity consider that the slowest component involved in the control is the GPS that acquires

the position of the drone with a frequency of 50 Hz, so the controller should have a period of 20ms,

the same reasoning is valid also for the image recognition which is a component connected to the

controller, these elements are of secondary importance respect to the previous ones so have a lower

priority.

The period of the INPUT task, since in useless to update too fast the speed of the ball, can be

realistically of 40ms, moreover this task is not much important for the system so have the lowest

priority.

The RECV task is event driven tasks since is activated by the arrival of a packet, about its priority the

RECV task is the most important in the system since is vital for the correct tracking of the ball and so

have the highest priority (5).

Since is not needed to be very fast in user interaction the GUI task can check for user input and

update the control panel graphic every 40ms, moreover since this task is not important for the

correct

With all of these considerations is obviously needed a real-time scheduling algorithm to ensure the

respect of deadlines (that for simplicity are chosen equals to the periods). Looking to the scheduling

algorithms available in the Linux kernel the best choice is SCHED_FIFO since allows the threads

with the same priority to be executed following the FIFO algorithm and each task can do his

execution unless another task with higher priority preempts it.

Testing environment
The whole system has been tested on a MacBook Pro 15” of 2017 with an Intel Core i7 3,1 GHz

processor, 16 GB of RAM and a graphic card Radeon Pro 560 of 4GB running MacOS High Sierra

10.13. The control panel runs into a virtual machine created with Parallels Desktop inside the host

system, while the 3D world simulator runs into the host system. The VM have one dedicated

processor and 1 GB of RAM running Ubuntu 16.04. Communication among the two machines is

handled by Parallels Desktop that creates a shared network between them.

Results and future work
Ball recognition algorithm
In this work the ball recognition algorithm developed is very simple and is based on some

assumptions: the ball color is uniform and without reflexes and shades on it and moreover that color

is not present in the surrounding environment. In a real context these constraints are too strict, so it

would be needed to develop a more accurate algorithm capable of detecting the target into a noisier

context. Moreover, the target to follow could become no more a ball, but for example a person or a

car; this could be useful in a wide number of real application where it could be useful to have an

Simulator of a drone ball follower

• • •

Bibliografia � 16

autonomous vehicle capable of follow a given object (for example for surveillance or to record the

actions of an athlete).

Drone controller
The employed controller has a slow response to the ball movement, this is due to the complexity in

tuning the two levels of PD controllers to achieve the maximum performances without losing

stability of the vehicle. This slow response required to reduce the speed of the ball in order to allow

the drone to follow it. This limit in a real context would be critical and would make the system

useless, so it would be strategic to improve the performances of the controller in order to achieve a

faster response without losing stability. This could be achieved by synthetizing a specified controller

or more realistically by moving from PD to PID controllers.

UDP transmission
Actually, the image sent from the 3D world simulator is in RAW format, this simplifies the analysis

of the image to detect the ball, but respect to a compressed format requires much more packets to

deliver the image through the network. Moreover, the implemented protocol discards the whole

image if another header packet is received before the image; in the tested environment where the

loss of packets could be considered negligible this is not a problem, but in a real context this would

become critical since the system could receive rarely a full image making so nearly impossible for

the controller to follow correctly the ball. For this reason future works will include changing the

format of the image from RAW to a compressed one (for example JPEG) in order to reduce the

number of packets to send through the network and the improvement of the transmission algorithm

in order to avoid to discard the whole image, but simply to require to the simulator to send another

time the missing packet (this could be done by moving from UDP to TCP renouncing to the more

speed guaranteed by the UDP solution).

Bibliografia

I. W.	R.	Beard,	“Quadrotor	dynamics	and	control.”	Brigham	Young	University,	2008.	
II. D.	Casini,	“Quadrotor	control	with	smartphone”	MECS,	2015	

